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1. Phys.: Condens. Matter 5 (1993) 217-228. Printed in the UK

Theory of a superconductor with a tricritical point

1 A Fomint
Instivt fir Theorie der Kondensierten Materie, Universitit Karlsruhe, Physikhochhaus,
Postfach 6980, D-7500 Karlsruhe 1, Federal Republic of Germany

Received 28 August 1992

Abstract. The Ginzburg—Landau theory of a superconductor with a tricritical point on
its phase transition line in the (T, P) plane is formulated. The tricritical point divides
the transition line into two parts. One patt is the line of first-order transitions, the other
that of second-order transitions. The magnetic properties of such a superconductor are
different from both type 1 and type II superconductors. In a part of the phase diagram,
the transition into the mixed state is a first-order wansition. The Meissner phase can
always coexist with the mormal phase. The assumption of the existence of a tricritical
point makes it possible to interpret the superconducting phase diagram of UPts in terms
of a one-component order parameter.

1. Introduction

There is still no satisfactory theoretical description of the properties of heavy-
fermion superconductors. In contrast to usual superconductors, which obey the weak-
coupling BCS theory, they have two types of anomaly: (i) the power-law temperature
dependencies of their thermodynamic and kinetic properties; and (i) the observation
of more than one phase transition line within the superconducting regime for these
compounds. The second anomaly manifests itself in a clear way in UPt;, where two
additional transition lines are observed, which is considered as an indication of the
existence of three different phases (for a review see [1]). Both kinds of anomaly
can naturally be explained by the BCS theory; if the pairing in these materials is
assumed to be unconventional, ie. at the superconducting transition, except for the
gauge symmetry, some other syinmetries of the normal phase are broken. Lowering
of symmetry can impose the existence of zeros in a superconducting gap, which
would explain the observed power laws. A multi-component order parameter can
be associated with unconventional pairing, which opens up the possibility for the
existence of different superconducting phases. The superfluid phases of *He exemplify
both features very well. The assumption that the pairing in heavy fermions is of an
unconventional nature is the realm of main stream research in theoretical efforts,
in order to interpret the properties of these superconductors. In particular, several
interpretation schemes of the complex phase diagram of UPt, have been suggested.
Different representations of the symmetry group of UPt; were probed for its order
parameter (for a review see [2]). Unfortunately, none of the suggested schemes gave,
until now, a satisfactory description of the observed phase diagram.
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It has, as of yet, not been properly appreciated that an understanding of the
properties of the superfluid phases of 3He, except for unconventional pairing, requires
another important development in the BCS theory. This is the introduction of strong-
coupling corrections, ie. terms in energy, which are of next to the leading order
in a ratio of superconducting gap to characteristic energy of a normal state which,
in the case of *He, is the Fermi energy [3]. Without introducing these corrections,
the A phase would not exist as being thermodynamically stable. It has already been
pointed out [4] that strong-coupling effects can be even more pronounced in such
anomalous materials as heavy-fermion superconductors. Under such circumstances
the weak-coupling BCs theory would no longer apply, and one could only rely on
a phencmenoclogical theory. Strong-coupling effects do not change the stracture of
the Ginzburg-Landau theory. The difference caused by the introduction of strong
coupling is that the coefficients entering this theory cannot be calculated from the
BCs theory, and have to be considered, as they initially were, as phenomenological
parameters. In particular, the fourth-order term in the expansion of the free energy
in powers of the order parameter need not be definitely positive. Removal of this
restriction makes it possible for a superconducting transition to be of first order. Some
other changes in the thermodynamic properties appear as well. All these changes
make it possibie to formulate an alternative interpretation of the phase diagram of
UPt,, which does not exploit a multi-component order parameter [5].

In the following three sections we consider the thermodynamic properties and the
temperature dependence of the critical magnetic field of a superconductor for which
the fourth-order term in the Landau expansion of the free emergy can take both
positive and negative values, depending on pressure or temperature. Application of
the developed scheme to UPt, is discussed in section 3.

The theory does not depend on a particular mechanism, which allows the fourth-
order terms to be negative. Another parameter, which is assumed to be smail in the
standard BCS theory, is the ratio of interatomic distance to the electron mean free
path. When this parameter is not small one can also expect substantial deviations
from the predictions of the BCs theory. In particular, Marikhin [6] has shown recently,
in connection with the phase diagram of U,__Th_Be;;, that for a multi-component
order parameter the anisotropic scattering on impurities at sufficiently large doping
can change the character of the phase trapsition into 2 superconducting state from
second to first order. The incorporation of a multi-component order parameter in
the developed scheme, although straightforward, is technically rather complicated. It
is better to defer this discussion until such necessity arises. It is unmlikely that the
mechanism considered by Marikhin is operative in UPt,, since many data for this
material were obtained with clean samples, where the mean free path of the carriers
is much greater than the coherence length [7].

2. Thermodynamics of a superconductor with a TcP

We start from the Landau expansion of the thermodynamic potential of a
superconductor in powers of the order parameter, which is assumed to be a one-
component complex function

&(P, T, |91%) = 6o( P, T) + a( P, T)|9* + 36( P, T)|#[* + 3d(P, T)|3[°. 1)

A second-order phase transition line is defined by the conditions o(P,T) =
(T -T,) =0, (P, T) > 0. It can happen [8] that, at a certain point (T}, F,)
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on this line, the coefficient b( P, T) turns to zero and changes its sign. lhis is a
so-called critical point of the second-order transition, or a tricritical point (TCP). In
a region & P, T) < 0 a phase transition is of first order and takes place on a line
defined by the following conditions:

PP, T, 1) /8lpP =0 PA]
¢( P, T,|%[%) = ¢,(P, T). ?3)

From condition (2), and with the thermodynamic potential (1), one finds the
equilibrium value of the order parameter:

2 = (1/2d) (\/52 " dad — b) : @

Substitution of this expression into formula (3) gives an equation of the first-order
transition line in terms of the coefficients «, & and d:

362 (P, T) = 16a( P, T)d(P, T). (5)

We assume that d(P,T) > 0. One can se¢ then, from the above formula, that
on the line of first-order tramsitions, a(P,7) > 0. The line «(P,T) = 0 for
b(P,T) < 0 has the meaning of a2 boundary of stability of the normal phase, or a
limit of overcooling. The limit of overheating of the superconducting phase is a line:
a = & f4d. The line of transition in a superconducting state now consists of two
parts: (P, T) = 0 for b > 0 and the line given by equation (5) for & < 0. These
parts meet each other at the TCP with a continuous tangent. On crossing the line (5),
the order parameter jumps from zero to a finite value:

|2 = —3b/4d. (6
Simultaneously, the entropy and the volume jump:
S,~ 8, = (3b/4d)(8a/8T)p  V,~V, = (dT,/dP)(S,~ 5,). D

Both jumps vanish at the TCP. In a region with & > 0, both the entropy and volume are
continuous, but the specific heat of the superconducting phase develops a singularity
C, ~ (T, — T)~'/ when the TCP is approached from a region with 5 > 0.

We have summarized above some of the known general properties of any phase
transition in the vicinity of a tricritical point [8]. Specifics of a superconductor
manifest themselves when the transition takes place in a magnetic field. To begin with,
we define the thermodynamic critical field H , ie. the critical field corresponding to
a transition into the Meissner phase with a complete expuision of the magnetic fieid
from a bulk superconductor. We assume, as usual, that the sample is a long cylinder
with the axis oriented parallel to the field. In the presence of a field, one has to
substitute ¢, — H? /8~ instead of ¢, into the condition of thermodynamic equilibrium
(3). For the thermodynamic potential (1), this gives:

o+ bwP + djplt =0 ®
ol + (b/2) [+ (/3|1 = —H? [8x. ©)
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After eliminating [1/|* from these equations, we arrive at an expression for H in
terms of the coefficients a, b and d:

H2, = (r/3d?) (\/bz —dad — b)z (2\/62 —4ad + b) . (10)

The critical field becomes zero when one of the last two brackets in this formula
is zero. At b > 0, the second bracket turns to zero at ¢ = 0, ie. on the line of
second-order transitions. In the vicinity of this line, when 4|a]d <« b2, formula (10)
gives the usnal expression for the critical field HZ, = 4ma?/b. In this case H_, tends
to zero linearly as (T~ T}, when T" approaches T,. At b < 0, the field H_, vanishes,
together with the third bracket in formula (10) on the line of first-order transitions,
defined by equation (5). In the vicinity of this line H2, = 6x(a|b|/d)(Ty — T),
where T, is the temperature of the first-order transition in a zero field. In this case,
H,, tends to zero as the square root of (T, — T'), in agreement with the general
relation S, — S, = (1/8x)dHZ,/dT and formula (7).

For usual superconductors, H,, is the true critical field only if the superconductor
is of type L The criterion for the assignment to type I is formulated in terms
of the parameter of Ginzburg and Landau which, in this case, has the form
& = (mefeh)(b/2m)?, and the criterion is x < 1/v2. Such a criterion, for obvious
reasons, cannot be applied when b is negative, and in this case the critical field has
to be found anew. This question exists not just for negative b. The TCP creates in
its vicinity a region where the sixth-order terms in expansion (1) are important. This
region is defined by the condition »* < 4|e|d, taken together with a general condition
of applicability of the Ginzburg and Landau theory (7. - T) /T, < 1, and it includes
positive b as well. Such a region can exist even if a TCP is only ‘“virtual’, ie. b is
positive, but the above-mentioned conditions are met. To make a clear distinction in
what follows we will denote as ‘usual’ those superconductors for which & is positive
and the strong inequality 5% >> 4|a|d holds in a region of applicability of the theory
of Ginzburg and Landau.

The equations of Ginzburg and Landau are necessary for finding the critical
magnetic field, and in the next section we discuss the changes which have to be
introduced in these equations for a superconductor with a TCPp.

3. The equations of Ginzburg and Landan

Following the usual procedure of derivation of the Ginzburg-Landau equations, we
write down the free energy of a superconductor in the form

B? R® 2ie
fs=fw+/[§+m (V—EA)tb

Here, ¥, is the free energy in the normal state, B (= curl A) is a magnetic field, e,
F, ¢ and mm are universal constants, and a possible anisotropy of the gradient term in
the energy is not taken into account. The difference with respect to the usual case,
is that the sixth-order terms are kept in the density of the bulk free energy:

2
+ F] dv. (1)

F, = a{v[ + o)}t + 1d|w)S. (12)
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By variation of this functional over * and the vector potential A one obtains two
equations:

(1/4m) (-:hv - 35,4) w4+ 8E /0y =0 (13)

aurl cur]A_—%r[!—c;h—(nb'Vzb YUY 4 2 WA] (14)

The boundary conditions for equations (13) and (14) remain the same as in the usual
case.

The equations look simpler when dimensionless variables are introduced.
Following Abrikosov [9] we denote these variables by primes: ' = 2 f+,;, where
1py is the equilibrium value of the order parameter, defined by formula (4), and
v = r/§, where & is a penetration depth, defined as

8 = mc? [8ret . (15)
Another characteristic length in the problem is the correlation radius for fluctuations
of the order parameter {. Following the standard theory of fluctuations [8], we obtain
for this radjus

&2 = —h? fAm(2a + bypd). (16)

The ratio of the two lengths defines the parameter of Ginzburg and Landau:
&? = (6/€)* = (1/27)(mc/eh)? Vb2 — 4ad = (1/2by) /b2 — dad. a7

The notation by = n{eki/mc)? is introduced here for brevity. The characteristic field
Hy is defined as H, = fic/2e£é (cf [10]). This field does not coincide with H, and
is not proportional to it. Only in the limit ad/b? — 0 does H; tend to H ,v2. With
the use of the field H,, further dimensionless quantities can be introduced:

B'=B/H, A= AJH$ F! = (8x/H})E,.
In comparison with the usual superconductors, F; contains an additional parameter—
the coefficient d. This means that when dimensionless units are introduced, an

additional dimensionless parameter will enter the Ginzburg-Lanrdau equations besides
. It turns out to be convenient to introduce, as such a parameter, the combination

0 =b/\/b2 —dad = (18)

Zbufcz
In terms of 8, the free energy density can be rewritten as
= —[(1+6)/241¢'F + (6/)1%'I + [(1~ 6} /6] (19)

One can see from definition (18) that within the domain of existence of a
superconducting phase, ¢ varies in the interval -2 < 8 < 1; @ = 1 everywhere on
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the line of second-order transitions, and 6 = —2 on the line of first-order transitions.
In the new variables, equations (13) and (14) assume the following form:

(—(i/x)V' - A + OF! fay"™ =0 (20)
curl curl A' = —(if26) (™ V' — ¢/ V™) — | 24", (21)
At @ = 1, the expression for the free energy density (19) acquires its usual form (cf

9D

For the free energy in dimensionless units, we obtain
v’ N
(-F-4)

When v and A satisfy equations (20) ard (21) this expression can be transformed in
such a way that the gradient term disappears:

Hi s [ | g
fs=.7-',,ﬂ+-§6f B? +

2
+ F,’} dv'. (22)

HE aF;
Fo=Fut+ g6 f I:B’z + F - iw'Fm] dv'. (23)
The contribution from the surface term to the free emergy was neglected in
transforming from (22) to (23).

In a summary of this section, we <an say that for a proper description of a
superconductor with a TCP it is nmecessary to introduce one more parameter in the
Ginzburg-Landau theory. The wsual situation corresponds to one particular value of
this parameter.

4. The critical field

The thermodypamic critica] field, which was discussed in section 2, is one of two
characteristic fields for usual superconductors. The other ficld is the boundary of
stability of the normal phase—H_,. The expression for H, does not depend on
higher-order terms in expansion (1), and it is given by the usual formula:

H, = —(2mc/eh)a. (24)

It was shown by Abrikosov [11] that for usual superconductors, when & > 1/v2,
H, is greater than H_, for all temperatures below T, and the transition into a
superconducting state takes place exactly at H = H,(T). The appearing state
(the mixed state) is periodic in space and a magnetic field penetrates into the
superconductor in the form of quantized flux lines. The average value of the order
parameter tends to zero when H approaches H, from below, i.e. a transition between
the normal and the mixed state is of second order. It will be shown in this section that,
for a superconductor with a TCP, the effect of a magnetic field on a superconducting
transition, in comparison with the usual superconductors, has two mew important
features:

(1) tramsition into the mixed state can be of first order and can take place at
H > Hy;

(ii) the lines H = H,,(T) and H = H,(T) in the (T, H) plane intersect at a
finite field, unless x < 1/v/2 everywhere in the domain of superconductivity.
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To prove the first statement, one has to apply the arguments of Abrikosov to
equations (20) and (21). Following the derivation given in [9], we arrive at the
following equation for the averaged value of ||

(1/&)(H' — HQ)HP+ (6 - 1/2698,, (F) =0 25)

where 8, is the ratio |'[*/([¢/[F)%. This ratio is of order unity and is different
for different vortex lattices. The sign of the coefficient in front of the quartic term
in equation (25) defines the character of the transition in the mixed state. Using
definitions (17) and (18) we can rewrite this coefficient in the following form:

6 —1/26% = (b= by) [/ b2 — ded. (26)

When b > by, the familiar case is obtained: equation (25) has a finite solution for
H < Hy: |9 ~ (Hy — H), and the transition is of second order. At b < by,
a transition into the mixed state is of first order, and takes place at H > H.
To find the value of the critical field, one would have to keep, in the equation for
[${%, terms up to the sixth order. Such an analysis has not yet been done. The
situation at b = b, is marginal. Let us consider first the case when # = 1, and the
superconductor is usual. In this case the condition b = b, is equivalent to k = 1/v/2:
this is simultaneously met for all points on the line H (T and it signals a transition
of a superconductor from type II to type I Such a behaviour is due to the fact
that in the usual situation b is treated as a constant. An account of its temperature
dependence would be consistent only if the sixth-order terms in the energy were kept.
In the vicinity of the TCP, when the sixth-order terms have to be taken into account,
the temperature dependence of b becomes essential. The condition b = b, defines a
line in the (7, P) plane (cf figure 1). Depending on the slope of this line different
situations may arise. Of particular interest is the possibility represented in figure 1,
ie. when the angle between the lines b( P, T) = b, and a( P, T) = 0 at the point of
their intersection is small. With increasing magnetic field, the transition point moves
from the line o( P, T) = 0 to lower temperatures. At a certain field H,, it can cross
the line b( P, T") = b,. This point will be tricritical on the line H (T). At H < H,,
the transition is of first order and at H > H,, of second. From general arguments
[8], which apply to all TCPs, one can conclude that there must be no change in the
slope of the curve H (T} at the TCP; only the second derivative of H, on T is
discontinuous. If such a crossing does not occur, the transition remains of first or
of second order, down to the lowest temperatures, depending on the value of b on
the line a( P, T) = 0 at a given pressure. These arguments have exact meaning only
within the region of applicability of the Ginzburg-Iandau theory, but they can be
used as 2 qualitative guide beyond this region.

To prove that the lines H_,(T) and H(T) intersect, it is sufficient to find a
point of their intersection. This can be done easily when both fields are expressed in
terms of «% and 6. It is convenient also to introduce into these expressions, instead
of the coefficient d, a term proportional to Hj, which has the dimensionality of a
magnetic field, and is defined as

H} = (8r/3)b}/d”. @7
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Figure L The phase diagram of a Figure 2. The (T, H) phase diagram of a superconducior
superconductor with 2 TcP. The full curve with a 7CP. The full curve represents the first-order
represents the first-order tramsition, the transition. M is the TCP. At the point o the surface energy
broken curve that of second order. On the between the normal and superconducting phases turns to
curve M M' the condition 8(P, T") = bg i85 zero. The critical fields Hem, He and Hy have their
melL. usual meanings. Below the line H the superconductor

is in the Meissner phase; above it, it is in the mixed state.

After substitution of (17), (18) and (27) in the formulae (10) and (24), we obtain
H,, = HilP(1-6)/2+ ¢ (28)
Hy = Hyy[3r(1- 69). (29)

These equations are easily solved with respect to 2 and the ratio H;/H, where H;
is the field at the intersection point:

R=22+0)/0+07  H/H; =D 2+0%(1-6)/1+6)

For any = > 1/V2 there exists a § satisfying the first of these equations and
belonging to the interval —1 < 6 < 1. When 8 is known, we can substitute it into
the second equation and find the corresponding field H;.

Now we are able to describe the full dependence of the critical field on
temperature for a superconductor with a TCP (cf figure 2). At zero field, the mansition
into the superconducting state is of first order and it takes place at ¢ > 0. The only
critical field which exists at ¢ > 0 is H_,. This means that, for small fields, H (T
coincides with H (7). The surface energy between the normal and superconducting
phases o, at zero field, is obviously positive. This means that, for small fields, the
formation of vortices is disadvantageous and the superconducting state is formed as
the Meissner phase even though the parameter x in that region can be much greater
than unity. When the field increases, the surface energy decreases. Calculation of
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the surface energy, which will be published separately [12], shows that when the
lines H,(T) and H_,(T) intersect this energy changes sign at a certain point
a: (T,, H_,) on the line H_ (T} before its intersection with H,(T). At fields
H > H_, creation of vortices becomes advantageous and the superconducting phase
shouid form in the mixed state. Since, at H > H_, the energy of the mixed state
is smaller than the energy of the Meissner phase at the same field and temperature,
the line of the phase transition H (T, starting from the point &, is deflected from
H_,(T) to higher ficlds (or temperatures). The normal phase is still stable in this
region of the (7', H) plane and the transition into the mixed state is of first order.

According to the above discussion, there are two possibilities for the behaviour
of H (T) at even higher fields. Either H (T) joins the line H,(T) at a TCP and at
higher fields it coincides with H,, or the tramsition remains of first order down to
Zero temperature.

We conclude that for a superconductor with a TCP the line H = H (T) can
contain three segments:

(1) a first-order transition segment H = H_ (T) for 0 < H < H;

(2) a first-order transition segment H = H(T), H(T) > Hg, H_ for
H, < H< H;and

(3) a second-order transition segment H = H,(T) for H > H,.

In the region below H_(T) there are at least two different superconducting
states—-the Meissner phase and the mixed state. These states are separated by
the line H,(T), which must branch from H_,(7) near the point o. This is the
lower critical field, at which formation of the flux lines becomes advantageous. The
behaviour of this line is similar to that for usual superconductors. There is, however,
a qualitative difference: for superconductors with a TCP the line A starts at a finite
field. This property can be used for experimental identification of a superconductor
with a TCP.

A further subdivision of the mixed state is possible. For usual superconductors
the only parameter characterizing a lattice in the vicinity of H, is 5,4, and minimum
of 7, is a minimum of energy [9]. Explicit minimization shows that the triangular
lattice is the most favourable in this case [10]. When higher-order terms are essential,
the new characteristics of a lattice will enter the problem, e.g. as a ratio [#[8/(]/2)3.
The known arguments do not apply in this case and an equilibrium lattice has to
be found anew. With respect to the phase diagram of a superconductor with a TCP
this means that in a region H > H,, when the transition is of second order, we
can use known results and claim that the equilibrium lattice is triangular. Without
further analysis, nothing can be said about an equilibrium lattice at H < H,. One
can expect, in principle, a transition between different lattices in a region H ~ H,.
No definite statement can be made until an analysis of energies of different lattices
for the case b < b is performed.

5. Application to UPt,

The theory developed in the previous sections, makes it possible to suggest a new
interpretation of the complex phase diagram of UPt,, both in (T, P) and in (T, H)
coordinates. We start with the (T, P) diagram, although the magnetic diagram was
investigated earlier [13]. The effects of hydrostatic pressure [14] and uniaxial stress
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[15] on the superconducting transition in UPt, have been investigated experimentally.
Since the above theory was developed for an isotopic case and formuiated in terms of
pressure, we discuss here only the hydrostatic pressure data. There is no contradiction
with the uniaxial stress data, but the necessary modification of the theory, although
straightforward, leads to additional complications,

At pressures above ~ 4 kbar, a single clear jump in the specific heat is observed at
the superconducting transition. At lower pressures an additional feature appears on
the temperature dependence of specific heat and, below ~ 2 kbar, two jumps can be
resolved. Such behaviour of the specific heat is considered to be evidence for splitting
of the superconducting transition and the occurrence of another superconducting
phase. Different interpretations of these data are possible. We assume that, in the
vicinity of the transition at normal pressure, the coefficient b in expansion (1) for
UPt, is negative. With increasing pressure, & increases until it turns to zero at a
point (T, F,), which, as a result, is tricritical. We identify this point with the point
where two jumps in the specific heat merge. From the data of [14] T, = 0.42 K and
P, = 3.7 kbar. At pressures below F,, the superconducting transition is of first order.
The jumps in the volume and the entropy, associated with the transition, can produce
stresses in a solid sample. Because of the stresses, the transition temperature will
broaden into a coexistence interval AT. Within this interval, the superconducting
and normal regions coexist in a sample. The width of the interval and the particular
dependence of specific heat on temperature depend on the experimental conditions.
A physically significant quantity is the overall change in entropy. It is not easy to
extract this change from the existing data because of the complicated structure of the
observed curves. The situation is more favourable for a jump in the volume. One
can use for the estimation of this jump the data on a thermal expansion coefficient
of UPt; [16]. Integration of the temperature dependence of the thermal expansion
coefficient, represented in figure 2 of [16}, shows a clear change of the relative size
of the sample in the direction of the ¢ axis at the phase transition. This change can
roughly be estimated as being AL/L_ ~ 10~8. With formulae (7), the combination
of coefficients ab/d could be extracted from these data. Unfortunately an ambiguity
introduced by extrapoiations from the regions remote from the transition makes this
estimate rather crude.

The phase diagram in the (T, H) plane, which emerges from the thermodynamic
data at normal pressure {13], looks similar to that in the (T, P) plane. Two jumps are
observed in the temperature dependence of the specific heat at low fields. When the
field increases, the jumps merge into one at a certain field H,, which is of the order
of 1 T Within the suggested scheme, this diagram has the same interpretation as the
(T, P) diagram. At zero field, according to the main assumption, the transition is
of first order. Upon increasing H, whereby T decreases, and remaining within the
b < by limitation, the transition remains of first order until the temperature T, is
reached, where b becomes equal to b;. According to the present scheme, this is the
temperature at which two singularities in the specific heat merge. The critical field
corresponding to T\, is, according to (24):

Hy = -2 (M) a( Py, Typ).-

At higher fields (and lower temperatures) the transition is of second order and the
point (T, Hyy) is tricritical. Tor reasons which have already been discussed, the
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first-order transition can be broadened in the coexistence interval which is, according
to the present interpretation, one of the observed superconducting phases. The
coexistence interval disappears at H > H), The experimentaily determined value
of T specifies one point (7}, F;) of the line b(T, P) = b, Other points on this
line can be obtained from magretic phase diagrams, obtained for different pressures.
Such data are not yet available,

In the vicinity of the TCP, all properties of the superconducting phase can be
expressed in terms of the four derivatives 8a/8P, 8a /8T, 8b/8P, 8b/3T taken
at the TCP and the coefficient d, which may be considered as a constant as well. The
available data are not yet sufficient to extract all these coefficients.

Acoustic measurements [17,18] confirm the splitting of the superconducting
transition and reveal two more transition lines in the superconducting region. One is
the H, line, the other line branches from H (T, approximately at the level of the
point M. Within the present scheme this couid be a change of structure of the vortex
Iattice. This observation calls for a2 further theoretical investigation of the mixed state
in superconductors with a TCP.

There is no direct conflict between the experimental data on phase diagrams of
UPt; and the suggested scheme of their interpretation. This scheme is also free from
certain shortcomings of the previously suggested schemes. In particular, the field
H, need not depend strongly on its orientation with respect to the crystallographic
axes, and the observed irreversibility of the penetration of the magnetic field [7] fits
the idea of a first-order transition. There are further qualitative features, which can
be tested experimentally, such as a hysteresis at the first-order transition line in the
{T, P) plane and a singularity of specific heat at the TCP. One can also think of a
direct observaticn of a phase separation at the first-order transition. An investigation
of the phase diagram, whereby both pressure and magnetic field can be varied, would
be of considerable assistance. In view of the implications, which were discussed in the
introduction, an experimental check of the suggested scheme would be of importance
for understanding the phenomena of superconductivity in heavy-fermion materials.
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