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J. Phys: Condens. Matter 5 (1993) 217-228. Printed in the UK 

Theory of a superconductor with a tricritical point 

I A Fomini 
lnstitut fir Theorie der Kondensierten MaErie, Univmit2t Karhuhe, Physikhochhaus. 
Postfach 6980, D-7500 Karisruhe 1, Federal Republic of Germany 

Received 28 Augusi 1992 

AbstrpeL ?he Ginzburg-Landau theory of a superconductor aith a uicritical p i n t  on 
ils phase Vansition line in the (T, P) plane is formulared. 'The hicritical point divides 
the transition tine into fwo pans. One pan b the line of Pmgrder transitions, the other 
that of m n d a d e r  transitions. The magnetic properties of such a superconductor are 
different f" both type I and rype I1 supexconductors. In a pan of the phase diagram, 
the transition into the mixed stale k a hrstworder Innsition. The Meisner phase can 
always oxxist  with the normal phase The assumption of the existence of a tricritical 
point makes it posibte IO interpret the superconducting phase diagram of Wt,  in terms 
of a one-component order parameter. 

I. Introduction 

There is still no satisfactory theoretical description of the properties of heavy- 
fermion superconductors. In contrast to usual superconductors, which obey the weak- 
coupling BCS theory, they have two types of anomaly: (i) the power-law temperature 
dependencies of their thermodynamic and kinetic properties; and (E) the observation 
of more than one phase mansition line within the superconducting regime for these 
compounds. The second anomaly manifests itself in a clear way in Upb. where two 
additional transition lines are observed, which is considered as an indication of the 
existence of three different phases (for a review see [l]). Both kinds of anomaly 
a n  naturally be explained by the BCS theory; if the pairing in these materials is 
assumed to be unconventional, ie. at the superconducting transition, except for the 
gauge symmetry, some other symmetries of the normal phase are broken. Lowering 
of symmetry can impose the existence of zeros in a superconducting gap, which 
would explain the observed power laws. A multi-component order parameter can 
be associated with unconventional pairing, which opens up the possibility for the 
existence of different superconducting phases. The superfluid phases of 3He exemplify 
both features very well. The assumption that the pairing in heavy fermions is of an 
unconventional nature is the realm of main smeam research in theoretical efforts, 
in order to interpret the properties of these superconductors. In particular, several 
interpretation schemes of the complex phase diagram of Vpt, have been suggested. 
Different representations of the symmetry group of Vpt, were probed for its order 
parameter (for a review see [2]). Unfortunately, none of the suggested schemes gave, 
until now, a satisfactory description of the observed phase diagram. 

t Permanent a d d m :  L D Landau Institute for Tleoretical Phyics, Kosygin Street, GSP-117940, Mosmw, 
Russia. 
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It has, as of yet, not been properly appreciated that an understanding of the 
properties of the superfluid phases of 3He, except for unconventional pairing, requires 
another important development in the BCS theory. This is the introduction of strong- 
coupling corrections, Le. terms in energy, which are of next to the leading order 
in a ratio of superconducting gap to characteristic energy of a normal state which, 
in the case of 3He, is the Fermi energy [3]. Without introducing these corrections, 
the A phase would not exist as being thermodynamically stable. It has already been 
pointed out [4] that strong-coupling effects can be even more pronounced in such 
anomalous materials as heavy-fermion superconductors. Under such circumstances 
the weakcouplig BCS theory would no longer apply, and one could only rely on 
a phenomenological theory. Strong-coupling effects do not change the structure of 
the Ginzburg-Landau theory. The difference caused by the introduction of strong 
coupling is that the coefficients entering this theory cannot be calculated from the 
BCS theory, and have to be considered, as they initially were, as phenomenological 
parameters. In particular, the fourth-order term in the expansion of the free energy 
in powers of the order parameter need not be definitely positive. Removal of this 
restriction makes it possible for a superconducting transition to be of first order. Some 
other changes in the thermodynamic properties appear as well. All these changes 
make it possible to formulate an alternative interpretation of the phase diagram of 
UF’t,, which does not exploit a multicomponent order parameter [SI. 

In the following three sections we consider the thermodynamic properties and the 
temperature dependence of the critical magnetic field of a superconductor for which 
the fourth-order term in the Landau expansion of the free energy can take both 
positive and negative values, depending on pressure or temperature. Application of 
the developed scheme to W t ,  is discussed in section 5. 

The theory does not depend on a particular mechanism, which allows the fourth- 
order terms to be negative. Another parameter, which is assumed to be small m the 
standard BCS theory, is the ratio of interatomic distance to the electron mean bee 
path When this parameter is not small one can also expect substantial deviations 
from the predictions of the Bcs theory. In particular, Marikhii [6] has shown recently, 
in connection with the phase diagram of U,-,Th,Be,,, that for a multicomponent 
order parameter the anisotropic scattering on impurities at sufficiently large doping 
can change the character of the phase transition into a superconducting state from 
second to first order. The incorporation of a multicomponent order parameter in 
the developed scheme, although straightfoward, is technically rather complicated. It 
is better to defer this discussion until such necessity arises. It & unlikely that the 
mechanism considered by Marikhii is operative in UP%, since many data for this 
material were obtained with clean samples, where the mean bee path of the camers 
is much greater than the coherence length [q. 

2. Thermodynamics or a superconductor with a TCP 

We start from the Landau expansion of the thermodynamic potential of a 
superconductor in powers of the order parameter, which is assumed to be a one- 
component complex function + 
A(~,T71+lz) = 4.(P,T) +4p,T)l+12+ $b(P,T)llGI4+ $(P,T)11G16. (1) 
A second-order phase transition line is defined by the conditions a(P,T)  = 
u(T - T,) = 0, b( P, 7’) > 0. It can happen [SI that, at a certain point (T, 5)  
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on this line, the coefficient b(P,T) turns to zem and changes its sign. lhis is a 
so-called critical point of the second-order transition, or a tricritical point (TCP). In 
a region b ( P , T )  < 0 a phase transition is of first order and takes place on a line 
defined by the following conditions: 

a4$(P,T,1~12)/al+12 = 0 (2) 

&(P,T, lm = &Lp,n. (3) 

From condition (2), and with the thermodynamic potential (l), one finds the 
equilibrium value of the order parameter: 

Substitution of this expression into formula (3) gives an equation of the first-order 
transition line in terms of the coefficients a, b and d 

3bZ(P ,T)  = 1 6 a ( P , T ) d ( P , T ) .  (9 
We assume that d(P,T)  > 0. One can see then, from the above formula, that 
on the line of first-order transitions, a ( P , T )  > 0. The line a(P,T)  = 0 for 
b( P, T) < 0 has the meaning of a boundary of stability of the normal phase, or a 
limit of overmling. The limit of overheating of the superconducting phase is a line: 
a = b2/4d. The line of transition in a superconducting state now consists of two 
parts: a( P, T) = 0 for b > 0 and the line given by equation (5) for b < 0. These 
parts meet each other at the KP with a continuous tangent On crossing the line (S), 
the order parameter jumps from zero to a finite value: 

]+I2 = -3b/4d. (6) 

Simultaneously, the entropy and the volume jump: 

S, - S, = ( 3 b / 4 d ) ( a ~ / a T ) ~  V,  - V ,  = (dT,/dP)(S, - Sn). 0 
30th jumps vanish at the TCP. In a region with b > 0, both the entropy and volume are 
continuous, but the specific heat of the superconducting phase develops a singularity 
Cp - (T, - T)-'/' when the XP is approached from a region with b > 0. 

We have summarized above mme of the known general properties of any phase 
transition in the vicinity of a bicritical point [SI. Specifics of a superconductor 
manifest themselves when the transition takes place in a magnetic field. ?b begin with, 
we define the thermodynamic critical field H,, ie. the critical field corresponding to 
a transition into the Meissner phase with a complete expulsion of the magnetic field 
from a bulk superconductor. We assume, as usual, that the sample is a long cylinder 
with the axis oriented parallel to the field. In the presence of a field, one has to 
substitute $n - HZ/85r instead of c $ ~  into the condition of thermodynamic equilibrium 
(3). For the thermodynamic potential (l), this gives: 
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After eliminating 1 + 1 2  from these equations, we arrive at an expression for H, in 
terms of the coefficients a, b and d 

The critical field becomes zero when one of the last two brackets in this formula 
is zero. At b > 0, the second bracket tum to zero at Q = 0, ie. on the line of 
second-order transitions. In the vicinity of this line, when Q bz, formula (10) 
gives the usual expression for the critical field H& = 4xaz /b .  In this case H ,  tends 
to zero linearly as (T,-T), when T approaches T,. At b < 0, the field H, vanishes, 
together with the third bracket in formula (10) on the line of first-order transitions, 
defined by equation (5). In the Vicinity of this line H‘, = 6x(albl/d)(Td - T), 
where Tc, is the temperature of the first-order transition in a m o  field. In this case, 
H ,  tends to zero as the square root of (Tcl - T), in agreement with the general 
relation S, - S, = (l /Sx)dH&/dT and formula (7). 

For usual superconductors, H ,  is the me critical field only if the superconductor 
is of type L The criterion for the assignment to type I is formulated in terms 
of the parameter of Ginzburg and Landau which, in this case, has the form 
n = (nzc /eh)(b /Zr) l ’ z ,  and the criterion is 6 < l/K2 Such a criterion, for obvious 
reasons, cannot be applied when b is negative, and in this case the critical field has 
to be found anew. This question exists not just for negative b. The TCP creates in 
its vicinity a region where the sixth-order terms in expansion (1) are important. This 
region is defined by the condition b2 5 41eld, taken together with a general condition 
of applicability of the Ginzburg and Landau theory (T, - T) /T ,  < 1, and it includes 
positive b as well. Such a region can exkt even if a m is only ’virtual’, ie. b is 
positive, but the above-mentioned conditions are met  ’Ib make a clear distinction in 
what follows we will denote as ’usual’ those superconductors for which b is positive 
and the strong inequality bZ >> 41ald holds in a region of applicability of the theory 
of Ginzburg and Landau. 

The equations of Ginzburg and Landau are necessary for finding the critical 
magnetic field, and in the next section we d s c w  the changes which have to be 
introduced in these equations for a superconductor with a m. 

3. The equations of Ginzburg and Landau 

Fo11owing the usual procedure of derivation of the Ginzburg-Landau equations, we 
wite down the h-ee energy of a superconductor in the form 

Here, Fd is the free energy in the normal state, E (= curl A) is a magnetic field, e, 
h, c and m are universal constants, and a possible anisotropy of the gradient term in 
the energy is not taken into account. The difference with respect to the usual case, 
is that the sixth-order terms are kept in the density of the bulk free energy: 

F, = al+12 + $b1+I4 + ;dl+l6. (12) 
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By variation of this functional over $* and the vector potential A one obtains two 
equations: 

(1/4m) (-ihV - C li, + aF, /av  = 0 (13) 

The boundary conditions for equations (13) and (14) remain the same as in the usual 
case. 

The equations look simpler when dimensionless variables are introduced. 
Fbllowing Abrikosov [9] we denote these variables by primes: $' = $I$,, where 
$, is the equilibrium value of the order parameter, defined by formula (4), and 
T' = TIS, where 6 is a penetration depth, defined as 

62 = mc2/8Te2&. (15) 

Another characteristic length in the problem is the correlation radius for fluctuations 
of the order parameter E. Following the standard theory of fluctuations [SI, we obtain 
for this radius 

E 2  = -hz/4m(2a + b+i). (16) 

The ratio of the two Lengths defines the parameter of Gmzburg and Landau: 

IC' = (6/[)'= (1 /2~) (mc/eh)~d== (1/2b,)d-. (17) 

The notation 6, = T( eh/mc)z is introduced here for brevity. The characteristic field 
H,  is defined as H ,  = hc/2eE6 (cf [IO]). This field does not coincide with H ,  and 
is not proportional to it. Only in the limit ad/bz  -+ 0 does H, tend to H,& With 
the use of the field H,, further dimensionless quantities can be introduced: 

B'= B / H ,  A' = A/H,6  F: = ( 8 r / H i ) F , .  

In comparison with the usual superconductors, F, contains an additional parameter- 
the coefficient d. This means that when dimensionless units are introduced, an 
additional dimensionless parameter Will enter the Ginzburg-Landau equations besides 
K. It turns out to be convenient to introduce, as such a parameter, the ambination 

In terms of 0, the free energy density can be rewritten as 

F: = -[(I + e)/ziili,'iz + (e/2)i$'id+ [(I - e)/qili,T. (19) 

One can see from definition (18) that within the domain of existence of a 
superconducting phase, 0 wries in the interval -2 < 0 < 1; 0 = 1 everywhere on 
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the fine of second-order Uansitions, and 6 = -2 on the line of first-order transitions. 
In the new variables, equations (13) and (14) mume the following form: 

At 6 = 1, the expression for the free energy density (19) acquires its usual form (cf 
191). 
L a, 

For the free energy in dimensionless units, we obtain 

When $ and A satisfy equations (20) and (21) this expression can be. transformed in 
such a way that the gradient term disappears: 

The contribution from the surface term to the free energy was neglected in 
transforming from (22) to (U). 

In a summary of thii section, we can say that for a proper description of a 
superconductor with a TCP it b necessary to introduce one more parameter in the 
Ginzburg-Landau theory. The usual situation corresponds to one particular wlue of 
this parameter. 

4. The critical field 

The thermodynamic critical field, which was discussed in section 2, is one of two 
characteristic fields for usual superconductors. The other field is the boundary of 
stability of the normal phase-H,. The expression for H, does not depend on 
higher-order terms in expansion (I), and it is given by the usual formula: 

H, = -(2mc/eh)a. (24) 

It was shown by Abrikaov [11] that for usual superconductors, when IC > I/& 
H ,  is greater than H, for all temperatures below T,, and the transition into a 
superconducting state takes place exactly at H = H,(T). The appearing state 
(the mixed state) is periodic in space and a magnetic field penetrates into the 
superconductor in the form of quantized flux lines. The average value of the order 
parameter tends to zero when H approaches H, from below, i.e. a transition between 
the normal and the mixed state is of second order. It will be shown in this section that, 
for a superconductor with a TCP, the effect of a magnetic field on a superconducting 
transition, in comparison with the usual superconductors, has two new important 
features: 

(i) transition into the mixed state can be of first order and can take place at 

(ii) the lines H = H,(T) and H = H,(T) in the (T, H )  plane intersect at a 
H > H a ;  

mite field, unless tc < 1 / f i  everywhere in the domain of superconductivity. 
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’Ib prove the first statement, one has to apply the arguments of Abrikosov to 
equations (20) and (21). ]Following the derivation given in 191, we arrive at the 
following equation for the averaged value of l+‘lz: 

- _  
where pa is the ratio l~’14/(]+’lz)2. This ratio is of order unity and is different 
for different vortex lattices. The sign of the coefficient in front of the quartic term 
in equation (25) defines the charact% of the transition in the mixed state. Using 
definitions (17) and (18) we can rewrite this coefficient in the following form: 

8 - 1/22 = ( b -  b o ) l d m .  

When b > bo, the familiar case is obtained: equation (25) has a finite solution for 
H < He: I+Iz - ( H ,  - H ) ,  and the transition is of second order. At b < bo, 
a transition into the mixed state is of fvst order, and takes place at H > H,. 
’Ib find the value of the critical field, one would have to keep, in the equation for 
1+12, terms up to the sixth order. Such an analysis has not yet been done. The 
situation at b = bo is marginal. Let us consider first the case when 8 = 1, and the 
superconductor is usual. In this case the condition b = bo is equivalent to K = 114: 
this is simultaneously met for all points on the line H J T )  and it signals a transition 
of a superconductor from type I1 to type I. Such a behaviour is due to the fact 
that in the usual situation b is treated as a constant. An account of its temperature 
dependence would be consistent only if the sixth-order terms in the energy were kept. 
In the Vicinity of the TCP, when the sixth-order terms have to be taken into account, 
the temperature dependence of b becomes essential. The condition b = bo defines a 
line in the (T, P) plane (cf figure 1). Depending on the slope of this line different 
situations may arise. Of particular interest is the possibility represented in figure 1, 
i.e. when the angle between the lines b( P, T) = bo and a( P, T) = 0 at the point of 
their intersection is small. With increasing magnetic field, the transition point moves 
from the line a( P, T) = 0 to lower temperatures. At a certain field Ht ,  it can m s  
the line b( P, T) = bw This point will be tricritical on the line H , ( T ) .  At H < H,, 
the transition is of first order and at H > Ht ,  of second. From general arguments 
[SI, which apply to all m, one can conclude that there must be no change in the 
slope of the curve H J T )  at the TCP; only the second derivative of H, on T is 
discontinuous. If such a crossing does not occur, the transition remains of first or 
of second order, down to the lowest temperatures, depending on the value of b on 
the line a( P, T) = 0 at a given pressure. These arguments have exact meaning only 
within the region of applicability of the Ginzburg-Landau theory, but they can be 
used as a qualitative guide beyond this region. 

’Ib prove that the lines H,(T) and H , ( T )  intersect, it is sufficient to lind a 
point of their intersection. This can be done easily when both fields are expressed in 
terms of kZ and 8. It is convenient also to introduce into these expressions, instead 
of the coefficient d, a term proportional to Hdr which has the dimensionality of a 
magnetic field, and is defined as 

H i  = (8a/3)b: /d2 .  (27) 
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F i i m  L 'Ex phase diagram of a 
superconductor with a m. The full curve 
represents the Brst-order transition, Ihe 
bmken cure that of second order. On the 
curve M M '  the mndition b(P, T )  = bo is 
met. 

ngvm Z The (T,  H )  phase diagram of a supermnducmr 
with a m. ?he full cum r e p r e ~ l u  the iirst-ora'er 
transition. M is t h e m .  At the point o the surface energy 
between the normal and superconducting phases Iums Io 
m. The critical fields H,, H a  and Hcl have their 
m a l  meanings. Below the Line H,1 the superconductor 
is in the Meinner phasr abwe it, it h in the mixed state. 

After substitution of (17, (18) and (27) in the formulae (10) and (24), we obtain 

H ,  = ~ ~ ~ ~ ( 1 -  e ) , E T Z  (9 

These equations are easily solved with respect to IC' and the ratio H J H d  where Hi 
is the field at the intersection pint :  

K 2  = "2 3 + e)/(i + e12 H , / H ,  = (;)3'2 (2 + e)z(1- e) / ( i+  e)3. 

For any K > I/fi there exists a 8 satisfying the first of these equations and 
belonging to the interval -1 < 0 < 1. When 0 is known, we can substitute it into 
the second equation and find the corresponding field Hi. 

Now we are able to describe the full dependence of the critical field on 
temperature for a superconductor with a TCP (cf figure 2). At zero field, the transition 
into the superconducting state is of first order and it takes place at a > 0. ?be only 
critical field which exists at a > 0 is H,. This means that, for small fields, H , ( T )  
coincides with H,(T). The surface energy between the normal and superconducting 
phases um, at zero field, is obviously positive. This means that, for small fields, the 
formation of vortices is disadvantageous and the superconducting state is formed as 
the Meissner phase even though the parameter K in that region can be much greater 
than unity. When the field increases, the surface energy decreases. Calculation of 
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the surface energy, which will be published separately [12], shows that when the 
lines H , ( T )  and H , ( T )  intersect this energy changes sign at a certain point 
c: (Tu, H , )  on the line H , ( T )  before its intersection with H , ( T ) .  At fields 
H > H,, creation of vortices becomes advantageous and the superconducting phase 
should form in the mixed state. Since, at H > H,, the energy of the mixed state 
is smaller than the energy of the Meissner phase at the same Eeld and temperature, 
the line of the phase transition H J T ) ,  starting from the point U,  is deflected from 
H , ( T )  to higher fields (or temperatures). The nom1 phase is still stable in this 
region of the (T, H) plane and the transition into the mixed state is of first order. 

According to the above discussion, there are two possibilities for the behaviour 
of H J T )  at even higher fields. Either H J T )  joins the line H , ( T )  at a TCp and at 
higher fields it coincides with H,, or the Uansition remains of first order down to 
zero temperature. 

We conclude that for a superconductor with a TCP the line H = H J T )  can 
contain three segments: 

(1) a firstader transition segment H = H,(T) for 0 < H < H,; 
(2) a first-order bansition segment H = H J T ) ,  H J T )  > H , , H ,  for 

(3) a secondader transition segment H = H,(T) for H > HI.  
In the region below H J T )  there are at least two different superconducting 

states-the Meissner phase and the mixed state. These states are separated by 
the line H,(T), which must branch from H,(T) near the point U. This is the 
lower critical field, at which formation of the flux l i e s  becomes advantageous. The 
behaviour of this line is similar to that for usual superconductors. There is, however, 
a qualitative difference: for superconductors with a TCP the line H,, starts at a finite 
field. This property can be used for experimental identification of a superconductor 
with a XP. 

A further subdivision of the mixed state is possible. Fbr usual superconductors 
the only parameter characterizing a lattice in the vicinity of H ,  is pa, and minimum 
of pa is a minimum of energy 191. Explicit minimization shows that the triangular 
lattice is the most favourable in this case [lo]. When higher-order terms are essential, 
the new characteristics of a lattice will enter the problem, e.g. as a ratio I Q 1 6 / ( I + I z ) 3 .  
The known arguments do not apply in this case and an equilibrium lattice has to 
be found anew. With respect to the phase diagram of a superconductor with a m 
this means that in a region H > H I ,  when the transition is of second order, we 
can use known results and claim &at the equilibrium lattice is triangular. Without 
further analysis, nothing can be said about an equilibrium lattice at H < HI. One 
can expect, in principle, a transition between different lattices in a region H - H I .  
No definite statement can be made until an analysis of energies of different lattices 
for the case 6 < 6, is performed. 

H ,  < H < H I ;  and 

- _  

5. Application to UP5 

The theory developed in the previous sections, makes it possible to suggest a new 
interpretation of the complex phase diagram of UPt,, both in (T, P) and in (T, H )  
coordinates. We start with the (T, P) diagram, although the magnetic diagram was 
investigated earlier [13]. The effects of hydrostatic pressure [14] and uniaxial stress 
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[U] on the superconducting transition in UPt, have been investigated experimentally. 
Since the above theory wds developed for an isotopic case and formulated in terms of 
pressure, we discuss here only the hydrostatic pressure data. There is no contradiction 
with the uniaxial stress data, but the necessary modification of the theory, although 
straightforward, leads to additional complications. 

At pressures above - 4 kbar, a single clear jump in the spec& heat is observed at 
the superconducting transition. At lower pressures an additional feature appears on 
the temperature dependence of specific heat and, below - 2 kbar, two jumps can be 
resolved. Such b e h a ~ o u r  of the specific heat is considered to be evidence for splitting 
of the superconducting transition and the Occurrence of another superconducting 
phase. Different interpretations of these data are possible. We assume that, in the 
vicinity of the transition at normal pressure, the coefficient b in expansion (1) for 
Wt, is negative. With increasing pressure, b increases until it turns to zero at a 
point (T,, e), which, as a result, is tricritical. We identify this p i n t  with the point 
where two jumps in the specific heat merge. From the data of [I41 = 0.42 K and 
PI = 3.7 kbar. At pressures below PI, the superconducting transition is of first order. 
The jumps in the volume and the entropy, associated with the transition, can produce 
stresses in a solid sample. Because of the stresses, the transition temperature will 
broaden into a coexistence inteml AT. Within this interval, the superconducting 
and normal regions coexist in a sample. The width of the interval and the particular 
dependence of specific heat on temperature depend on the experimental conditions. 
A physically significant quantity is the overall change in entropy. It is not easy to 
extract this change from the exi?,ting data because of the complicated structure of the 
observed curves. The situation is more favourable for a jump in the volume. One 
can use for the estimation of this jump the data on a thermal expansion coefficient 
of UPt, [16]. Integration of the temperature dependence of the thermal expansion 
coefficient, represented in figure 2 of [16], shows a clear change of the relative size 
of the sample in the direction of the e axis at the phase transition. This change can 
roughly be estimated as being A L / L ,  - With formulae (7), the combination 
of coefficients a b / d  could be extracted from these data. Unfortunately an ambiguity 
introduced by extrapolations from the regions remote from the transition makes this 
estimate rather crude. 

The phase diagram in the (T, H) plane, which emerges from the thermodynamic 
data at normal pressure [13], looks similar to that in the (T, P) plane. Xvo jumps are 
observed in the temperature dependence of the specific heat at low fields. When the 
field increases, the jumps merge into one at a certain field H,, which is of the order 
of 1 T Within the suggested scheme, this diagram has the Same interpretation as the 
(T, P) diagram. At zero field, according to the main assumption, the transition is 
of first order. Upon increasing H, whereby T decreases, and remaining within the 
b < b, limitation, the transition remains of first order until the temperature TM is 
reached, where b becomes equal to b,. According to the present scheme, this is the 
temperature at which two singulanties in the specific heat merge. The critical field 
corresponding to TM is, according to (24): 

At higher fields (and lower temperatures) the transition is of second order and the 
point (TMr HM) is uicritical. For reasons which have already been discussed, the 
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fust-order transition can be broadened in the coexistence interval which is, according 
io the present interpretation, one of the observed superconducting phases. The 
medstence interval disappears at H > Hw The experimentally determined value 
of TM speciEes one point ( TM, Po) of the line b( T, P) = b,. Other points on this 
line can be obtained from magnetic phase diagrams, obtained for different pressures. 
Such data are not yet available. 

In the vicinity of the Tcp, all properties of the superconducting phase can be 
expressed in tenns of the four derivatives Ba/i3P, aa/aT,  ab/i3P, Bb/aT taken 
at the TCP and the coefficient d, which may be considered as a constant as well. The 
available data are not yet sufficient to extract all these coefficients. 

Acoustic measurements [17,18] confirm the splitting of the superconducting 
transition and reveal two more transition lines in the superconducting region. One is 
the Hd line, the other h e  branches from H,(T),  approximately at the level of the 
point M. Within the present scheme this could be a change of structure of the vortex 
lattice. This observation calls for a further theoretical investigation of the mixed state 
in superconductors with a m. 

There is no direct conflict between the experimental data on phase diagrams of 
Wt, and the suggested scheme of their interpretation. This scheme is also free from 
certain shortcomings of the previously suggested schemes. In particular, the field 
H, need not depend strongly on its orientation with respect m the crystallographic 
axes, and the observed irreversibility of the penetration of the magnetic field [7] fits 
the idea of a first-order transition. There are further qualitative features, which can 
be tested experimentally, such as a hysteresis at the first-order Damition line in the 
(T,P) plane and a singularily of specific heat at the TCP. One can also thiik of a 
direct obselvation of a phase separation at the fust-order transition. An investigation 
of the phase diagram, whereby both pressure and magnetic field can be wried, would 
be of considerable assistance. In view of the implications, which were discussed in the 
introduction, an experimental check of the suggested scheme would be of importance 
for understanding the phenomena of superconductivity in heavy-fennion materials. 

hknow1edgment.s 

This work was done during my stay at the institut f i r  Theorie der Kondensierten 
Materie at the University of Karlsruhe, and I am grateful to Professor P WoMe 
for his kind hospitality and numerous instructive discussions. I thank Professors P 
Hirschfeld, H von LGhneysen and B Liithi and Dr Z Koziol for useful discussions 
and comments, and B Lyons for careful editing of the manuscript. The work was 
supported by the Deutsche Forschungsgemeinschaft. 

References 

[l] Billefer I., Flouquel J and Lonzarich G G 1591 Physicu B 169 257 
p] Sigrist M and Ueda K 1991 Rev Mod Phys 63 239 
[31 Serene J W and Rainer D 1983 Phys Rcp. 101 221 
141 Rainer D 1988 Pbs. Sm T 23 106 
[Sj Fomin I A 1992 
161 Marikhin V G 1590 Solr &s.-JETP 70 284 

as a superconductor with the critical point Reprint 

i i  Vmoent F, Hamman J, %iilefer L, Behnia K, Keller N and Rouquet J 1991 1 Phyx: Condenr 
Mona 3 3513 



228 I A Fomin 

pndau L D and Jifshitz E M 1976 Sfarbtichakaja Fizi!a (Mosmw: Nauka) p 563 
Abrikosov A A 19s Fimda"& of h e  %my of Merob (Amsterdam: North Holland) 
SaintJames D, Sarma 0 and lhomas E J 1969 
Abrikosw A A 1957 Ur Elpp Em Fu 37. 1442 (En@. lkansl. 1957 Sou Ws-JETP 5 1774) 
Fomin I A and Lyons B 1592 Surface energy and for a supemndumr mth a aicritical pint 

Fsher R A, Kim S, Wwdfieid B E Philip N E, Billefer L, Hassclbach K, Flouquel J, Giorgi A 

pdppmann T van Lihnqrsen H and Billefer L 1991 Phys Rex B 0 13714 
Jin D S, M e r  S A, EUman B, Rosenbaum T F and Hinks D G 199.2 w. h. Lm 59 1597 
Hassclbach K, Lac& A de Vwser A, Behnia K, Billefer L and Rouquet J 19% L Low T q .  

Bmk G, Weber D, Wolf B, Falmeier P; E t h i  B, de Viser A and Menmki A 1990 phvr Rex 

Adenvalla S, lin S W Zhao 2, Ran Q Z Ketlason J B, Sauls J A, Dillefer L, Hinb D G, LNy 

II Supwc&?dy (New York Pergamon) 

Arprbu 

L and Smith J L 1969 phvs Rev Lm 62 1411 

phys 81 299 

Lm 652294 

M and Sarma B K 19Wphys Rn! Lza 65 2298 

. .  . ,  


